
NI-FBUSTM

Communications
Manager Function
Reference Manual

July 1997 Edition
Part Number 321288B-01

© Copyright 1996, 1997 National Instruments Corporation.
All Rights Reserved.

Internet Support
support@natinst.com
E-mail: info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
(512) 418-1111

Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466,
Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability
of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any
action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein
does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National
Instruments installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse,
misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
NI-FBUS™ is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user
or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v NI-FBUS Communications Manager Function Reference

Table
of

Contents

About This Manual
How to Use the Manual Set .. ix
Organization of This Manual...x
Conventions Used in This Manual ..xi
Related Documentation ...xi
Customer Communication...xi

Chapter 1
Administrative Functions

Format of the Function Information ..1-1
Function Names...1-1
Purpose..1-1
Format ...1-1
Input ..1-1
Output..1-1
Context ..1-2
Description ..1-2
Return Values..1-2

nifClose..1-3
nifGetBlockList ...1-5
nifGetDeviceList ...1-8
nifGetInterfaceList...1-11
nifGetVFDList...1-13
nifOpenBlock ..1-16
nifOpenLink ..1-18
nifOpenPhysicalDevice ...1-20
nifOpenSession..1-22
nifOpenVfd..1-24

Table of Contents

NI-FBUS Communications Manager Function Reference vi © National Instruments Corporation

Chapter 2
Core Fieldbus Functions

Format of the Function Information.. 2-1
Function Names.. 2-1
Purpose ... 2-1
Format... 2-1
Input.. 2-1
Output ... 2-1
Context.. 2-2
Description.. 2-2
Return Values ... 2-2

nifFreeObjectAttributes .. 2-3
nifGetObjectAttributes.. 2-4
nifGetObjectSize... 2-8
nifGetObjectType ... 2-11
nifReadObject ... 2-18
nifReadObjectList ... 2-22
nifWriteObject .. 2-25
Using Interface Macros... 2-29

Chapter 3
Alert and Trend Functions

Format of the Function Information.. 3-1
Function Names.. 3-1
Purpose ... 3-1
Format... 3-1
Input.. 3-1
Output ... 3-1
Context.. 3-1
Description.. 3-2
Return Values ... 3-2

nifAcknowledgeAlarm.. 3-3
nifWaitAlert .. 3-5
nifWaitTrend... 3-8

Table of Contents

© National Instruments Corporation vii NI-FBUS Communications Manager Function Reference

Appendix
Customer Communication

Glossary

Index

Tables
Table 1-1. List of Administrative Functions..1-2

Table 2-1. List of Core Functions..2-2
Table 2-2. Object Codes for the nifObjTypeList_t Data Structure............................2-14
Table 2-3. Standard Data Types for Objects with

the Object Code ODT_SIMPLETYPE...2-16
Table 2-4. Core Function Macros..2-29

Table 3-1. List of Alert Functions ...3-2
Table 3-2. Trend Function...3-2

© National Instruments Corporation ix NI-FBUS Communications Manager Function Reference

About
This

Manual

This manual describes the functions of the NI-FBUS Communications
Manager software. The NI-FBUS Communications Manager software for
Windows 95 is meant to be used with the Microsoft Windows 95
operating system. The NI-FBUS Communications Manager software for
Windows NT is meant to be used with the Microsoft Windows NT
(version 3.5.1 and later) operating system. This manual assumes that you
are already familiar with the appropriate Microsoft operating system.

How to Use the Manual Set

Getting Started
Manual

Installation and
Configuration

NI-FBUS
Communications

Manager
User Manual for

 Windows 95 and
Windows NT

Application
Development
and Utilities

Novice
Users

Experienced
Users

NI-FBUS
Communications

Manager Function
Reference Manual

Function
and Structure
Descriptions

About This Manual

NI-FBUS Communications Manager Function Reference x © National Instruments Corporation

Use this function reference manual to look up specific information about
NI-FBUS functions, such as input and output parameters, syntax, and
error messages.

Use the getting started manual to install and configure your fieldbus
interface and the NI-FBUS Communications Manager software.

Use the NI-FBUS Communications Manager User Manual for
Windows 95 and Windows NT to learn how to use the NI-FBUS
Communications Manager interface for your application.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, Administrative Functions, includes a list of available
NI-FBUS administrative functions, and describes the purpose,
format, input and output arguments, context, description, and return
values for each function.

• Chapter 2, Core Fieldbus Functions, lists and describes the core
NI-FBUS functions.

• Chapter 3, Alert and Trend Functions, lists and describes the
NI-FBUS alert and trend functions.

• The Appendix, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on our
products and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

About This Manual

© National Instruments Corporation xi NI-FBUS Communications Manager Function Reference

Conventions Used in This Manual
This manual uses the following conventions:

bold italic Bold italic text denotes a note, caution, or warning.

bold Bold text in this font denotes the messages and responses that
monospace the computer automatically prints to the screen. This font also

emphasizes lines of code that are unique.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept. This font also denotes text for which you supply the appropriate
word or value.

italic Italic text in this font denotes that you must supply the appropriate words
monospace or values in the place of these items.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, variables, filenames and extensions, and for
statements and comments taken from programs.

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• Function Block Application Process, Part 1

• Function Block Application Process, Part 2

• Device Description Services Specification, Fieldbus Foundation

• Fieldbus Message Specification, Fieldbus Foundation

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make
it easy for you to contact us, this manual contains comment and

About This Manual

NI-FBUS Communications Manager Function Reference xii © National Instruments Corporation

configuration forms for you to complete. These forms are in the
Appendix, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-FBUS Communications Manager Function Reference

Administrative Functions
1

Chapter

This chapter includes a list of available NI-FBUS administrative functions, and describes
the purpose, format, input and output arguments, context, description, and return values for
each function.

For details on how NI-FBUS functions are classified and how to use them, refer to the
NI-FBUS Communications Manager User Manual for Windows 95 and Windows NT.

Format of the Function Information

Function Names
The functions are in alphabetical order.

Purpose
The Purpose sections are brief statements of the purpose of each function.

Format
The Format sections show the format for calling each function.

Input
The Input sections show the input parameters for each function.

Output
The Output sections show the output parameters for each function.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-2 © National Instruments Corporation

Context
The Context sections tell you if you can use a function on a link, device, VFD, session, or
physical device.

Description
The Description sections describe the purpose and workings of each function.

Return Values
The Return Values sections list all the return values for each function and explain what
each one means.

Table 1-1. List of Administrative Functions

Function Purpose

nifClose Close an open descriptor

nifGetBlockList Return a list of information for all blocks of the
specified type present in the VFD

nifGetDeviceList Return the list of information for all active
devices on the network

nifGetInterfaceList Read the list of interface names from the
NI-FBUS Communications Manager
configuration

nifGetVFDList Gather VFD information on a specified
physical device

nifOpenBlock Return a descriptor representing a block

nifOpenLink Return a descriptor representing a fieldbus link

nifOpenPhysicalDevice Return a descriptor representing a physical
device

nifOpenSession Return a descriptor for an NI-FBUS session

nifOpenVfd Return a descriptor representing a Virtual Field
Device (VFD)

Chapter 1 Administrative Functions

© National Instruments Corporation 1-3 NI-FBUS Communications Manager Function Reference

nifClose

Purpose
Close an open descriptor.

Format
nifError_t nifClose(nifDesc_t ud)

Input
ud The descriptor from an nifOpen call.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifClose closes the specified descriptor. The descriptor is invalid after it is closed. Be
sure your application closes all the descriptors it opens. Your application should always
close a descriptor if it no longer needs the descriptor.

If you close a descriptor with calls pending on it, the calls complete within the usual time
with an error code indicating that you closed the descriptor prematurely. If you make more
synchronous wait calls that wait on the closing descriptor, such as nifWaitTrend ,
nifWaitAlert , and nifGetDeviceList , the NI-FBUS Communications Manager aborts
these functions and returns an error code indicating that you closed the descriptor. Because
calls that wait on a closed descriptor return an error message, you should have a separate
descriptor just for these synchronous wait calls.

Note: A session is a connection between your application and an NI-FBUS
entity. If you close a session, you close the communication channel
between your application and the NI-FBUS entity associated with the
session. Make sure you close all descriptors opened under this session
before closing a session descriptor.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-4 © National Instruments Corporation

nifClose
Continued

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor is invalid.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-5 NI-FBUS Communications Manager Function Reference

nifGetBlockList

Purpose
Returns a list of information for all blocks of the specified type present in the VFD.

Format
nifError_t nifGetBlockList(nifDesc_t ud, uint8 whichTypes,

nifBlockInfo_t *info, uint16 *numBlocks)

Input
ud The descriptor of a VFD.
whichTypes Specifies what types of blocks to return (function,

transducer, or physical).
numBlocks The number of buffers allocated in the info list.

Output
info The list of information associated with each block.
numBlocks The number of blocks actually in the VFD.

Context
VFD.

Description
nifGetBlockList returns information about all the blocks in the specified VFD. A block
can be a resource block, transducer block, or function block residing within a VFD. Only
blocks of the types specified by whichTypes are returned.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-6 © National Instruments Corporation

nifGetBlockList
Continued

nifBlockInfo_t is defined as follows:

typedef struct {
char fbTag[TAG_SIZE + 1];
uint16 startIndex;
uint32 ddName;
uint32 ddItem;
uint16 ddRev;
uint16 profile;
uint16 profileRev;
uint32 executionTime;
uint32 periodExecution;
uint16 numParams;
uint16 nextFb;
uint16 startViewIndex;
uint8 numView3;
uint8 numView4;
uint16 ordNum;
uint8 blockType;

} nifBlockInfo_t;

The blockType field in nifBlockInfo_t can be FUNCTION_BLOCK,
TRANSDUCER_BLOCK, or RESOURCE_BLOCK.

The whichTypes parameter must be a bit combination of FUNCTION_BLOCK,
TRANSDUCER_BLOCK, and RESOURCE_BLOCK.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor was invalid or of the wrong type.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold
all the information for the blocks. If you receive
this error, buffer entries that you allocated do not
contain valid block information when the call
returns.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-7 NI-FBUS Communications Manager Function Reference

nifGetBlockList
Continued

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifGetBlockList completed.

E_BAD_ARGUMENT The whichtypes value is something other than
FUNCTION_BLOCK, TRANSDUCER_BLOCK, or
RESOURCE_BLOCK.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-8 © National Instruments Corporation

nifGetDeviceList

Purpose
Return the list of information for all active devices on the network.

Format
nifError_t nifGetDeviceList(nifDesc_t link,

nifDeviceInfo_t *devInfo, uint16 *numDevices,
uint16 *revision)

Input
link The link descriptor to return information for.
numDevices The number of allocated list entries.
revision The revision number from the last

nifGetDeviceList call, or zero (see the
Description for usage).

Output
devInfo The list of device information.
numDevices The number of devices present in the link.
revision Current revision number of the live list that the

NI-FBUS Communications Manager reads from
the fieldbus interface to the specified link.

Context
Link.

Description
nifGetDeviceList returns a list of information describing each device on the link. A link
is a group of fieldbus devices connected across a single wire pair with no intervening
bridges. Before nifGetDeviceList returns the list of information, nifGetDeviceList

waits until the revision argument passed in differs from the live list revision number the
fieldbus interface keeps to the specified link. The revision numbers the fieldbus interface
keeps start at one, so if you pass in a zero for revision , you can force
nifGetDeviceList to immediately return the current device list. To use
nifGetDeviceList most effectively, in subsequent calls to it, you should pass in the
revision parameter output from the previous call to nifGetDeviceList . Using the

Chapter 1 Administrative Functions

© National Instruments Corporation 1-9 NI-FBUS Communications Manager Function Reference

nifGetDeviceList
Continued

revision parameter output from the previous call forces nifGetDeviceList to wait until
the device list has actually changed before returning the list of information.

If a device on the bus is unresponsive, its entry in the device information list has the tag
and device ID unknown device , but its address field is correct. Also, the flag bit
NIF_DEV_NO_RESPONSE is set.

The device list includes devices in the fixed, temporary, and visitor address ranges.

If there are too few input buffers, nifGetDeviceList returns an error code, but the
numDevices parameter is set to the total number of devices available. In this case, the
buffers you pass in do not contain valid data, but the revision number is set to the correct
value. If a device is an interface device, then the flag bit NIF_DEV_INTERFACE is set.
You can abort a pending nifGetDeviceList call by closing the link descriptor on which
the call was made.

nifDeviceInfo_t is defined as follows:

typedef struct {
char deviceID[DEV_ID_SIZE + 1];
char pdTag[TAG_SIZE + 1];
uint8 nodeAddress;
uint32 flags;

} nifDeviceInfo_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The link descriptor is invalid.

E_BUF_TOO_SMALL There are not enough buffers allocated. If you
receive this error, your input buffers do not contain
valid data.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-10 © National Instruments Corporation

nifGetDeviceList
Continued

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifGetDeviceList completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-11 NI-FBUS Communications Manager Function Reference

nifGetInterfaceList

Purpose
Read the list of interface names from the NI-FBUS Communications Manager
configuration.

Format
nifError_t nifGetInterfaceList(nifDesc_t ud,

int16 *numIntf, nifInterfaceInfo_t *info)

Input
ud A valid session descriptor.
numIntf The number of buffers for interface information

reserved in info.

Output
numIntf The actual number of names returned.
info An array of structures containing the interface

name and device ID for each interface.

Context
Not applicable.

Description
nifGetInterfaceList returns the interface name and device ID of each fieldbus
interface in the NI-FBUS Communications Manager configuration. The numIntf

parameter is an IN/OUT parameter. On input, it must contain the number of buffers that
info allocates and points to, and on output it contains the total number of interface
information entries available. If not enough buffers were allocated, or if the info buffer is
NULL, the NI-FBUS Communications Manager returns an error and does not copy any
data to the buffers. In this case, the numIntf parameter is still valid.

The nifInterfaceInfo_t structure is defined as follows:

typedef struct nifInterfaceInfo_t{
char interfaceName[NIF_NAME_LEN];
char deviceID[DEV_ID_SIZE +1];

} nifInterfaceInfo_t;

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-12 © National Instruments Corporation

nifGetInterfaceList
Continued

Note: nifGetInterfaceList is an internal function for the NI-FBUS
Communications Manager and does not cause fieldbus activity.

Return Values
E_OK The call was successful.

E_BUF_TOO_SMALL The buffer does not contain enough entries to hold
all the interface information.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-13 NI-FBUS Communications Manager Function Reference

nifGetVFDList

Purpose
Gather VFD information on a specified physical device.

Format
nifError_t nifGetVFDList(nifDesc_t ud, nifVFDInfo_t *info,

uint16 *numBuffers)

Input
ud The descriptor of the physical device to get the

VFD list for.
numBuffers The number of buffers allocated in the info list.

Output
numBuffers The number of VFDs actually in the device.
info The VFD information.

Context
Physical device.

Description
nifGetVFDList gathers function block application VFD information from the specified
physical device. A physical device is a fieldbus entity residing at a single address on a link.

If there are too few input buffers, or if the input buffer pointer is NULL, an error code is
returned, but the numBuffers parameter is set to the total number of VFDs in the device.
In this case, no buffers contain valid data on output.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-14 © National Instruments Corporation

nifGetVFDList
Continued

The info parameter has the following format:

typedef struct {
char vfdTag[TAG_SIZE + 1];
char vendor[TAG_SIZE +1];
char model[TAG_SIZE +1];
char revision[TAG_SIZE +1];
int16 ODVersion;
uint16 numTransducerBlocks;
uint16 numFunctionBlocks;
uint16 numActionObjects;
uint16 numLinkObjects;
uint16 numAlertObjects;
uint16 numTrendObjects;
uint16 numDomainObjects;
uint16 totalObjects;
uint32 flags;

} nifVFDInfo_t;

Return Values
E_OK The call was successful.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_INVALID_DESCRIPTOR The input descriptor does not correspond to a
physical device.

E_BUF_TOO_SMALL There were not enough allocated buffers. Your
specified input buffers do not contain valid data.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifGetVFDList completed.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-15 NI-FBUS Communications Manager Function Reference

nifGetVFDList
Continued

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-16 © National Instruments Corporation

nifOpenBlock

Purpose
Return a descriptor representing a block.

Format
nifError_t nifOpenBlock (nifDesc_t ud, char *blockTag,

nifDesc_t *out_ud)

nifError_t nifOpenBlock (nifDesc_t ud, NIFB_ORDINAL(n),
nifDesc_t *out_ud)

Input
ud A valid session, link, physical device, or VFD

descriptor.
blockTag The tag of the block. To access a block by ordinal

number within a VFD, use the NIFB_ORDINAL

macro in the nifbus.h header file. You can only
access a block by ordinal number for VFD
descriptors.

Output
out_ud A descriptor for the block you request.

Context
VFD, physical device, link, session.

Description
nifOpenBlock returns a descriptor for the block you specify. You must pass a valid
session, link, physical device, or VFD descriptor to this function.

There are two ways to specify the block: by tag, and by ordinal number. To open the block
by its tag, you must set blockTag to the current tag of the block. The NI-FBUS
Communications Manager returns an error if it finds more than one block with the same
tag. You can obtain the list of block tags within a specified VFD with a call to
nifGetBlockList .

Chapter 1 Administrative Functions

© National Instruments Corporation 1-17 NI-FBUS Communications Manager Function Reference

nifOpenBlock
Continued

To open the block by its ordinal number, use the NIFB_ORDINAL macro. This macro is
only valid if ud is a VFD descriptor. The first block in a VFD has the ordinal number zero.
Notice that the first block in a VFD is always the resource block.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_MULTIPLE There are identical block tags.

E_ORDINAL_NUM_OUT_OF The ordinal number is out of the device’s range.
_RANGE

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with the
device.

E_NOT_FOUND There is no such block in the device or VFD with
the specified tag.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifOpenBlock completed.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-18 © National Instruments Corporation

nifOpenLink

Purpose
Return a descriptor representing a fieldbus link.

Format
nifError_t nifOpenLink (nifDesc_t session, uint8 interfaceOrDevID,

char *name, uint16 linkID, nifDesc_t *out_ud)

Input
session A valid session descriptor on which to open the

link.
interfaceOrDevID How to specify the link: zero if by interface name,

one if by local device ID.
name The interface name or local device ID.
linkID The link ID.

Output
out_ud A descriptor for the link you request.

Context
Session.

Description
nifOpenLink returns a descriptor for the link you specify. You must pass a valid session
descriptor to this function.

There are two ways you can specify the link. If the interfaceOrDevID parameter is zero,
then name specifies the name of the interface the link is connected to. The list of valid
interface names is contained in a configuration source which the NI-FBUS
Communications Manager has access to, and can be obtained by a call to
nifGetInterfaceList . If interfaceOrDevID is one, then the name specifies the
device ID of an interface device to which the NI-FBUS Communications Manager is
attached.

In both cases, linkID is the fieldbus link ID number for the specified link. For
single-segment fieldbus networks, you can set linkID to zero.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-19 NI-FBUS Communications Manager Function Reference

nifOpenLink
Continued

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

E_NOT_FOUND The interface name, device ID or link ID you
specified is not found.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_BAD_ARGUMENT The interfaceOrDevID value is not valid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifOpenLink completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-20 © National Instruments Corporation

nifOpenPhysicalDevice

Purpose
Return a descriptor representing a physical device.

Format
nifError_t nifOpenPhysicalDevice (nifDesc_t ud, uint8 tagOrDevID,

char *name, nifDesc_t *out_ud)

Input
ud A valid session or link descriptor on which to open

the device.
tagOrDevID How to specify the device: zero if by physical

device tag, one if by device ID.
name The tag or device ID.

Output
out_ud A descriptor for the device you request

Context
Link, session.

Description
nifOpenPhysicalDevice returns a descriptor for the physical device you specify. You
must pass a valid session or link descriptor to this function. If you pass a link descriptor,
the NI-FBUS Communications Manager searches only that link for the specified device.

There are two ways you can specify the device. If the tagOrDevID parameter is zero, then
the name specifies the tag of the physical device. If tagOrDevID is one, then name is the
device ID of the device you specify. You can obtain the list of physical device tags and
device IDs of devices on the network with a call to nifGetDeviceList .

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-21 NI-FBUS Communications Manager Function Reference

nifOpenPhysicalDevice
Continued

E_BAD_ARGUMENT The tagOrDevID value is not valid.

E_NOT_FOUND No attached physical device has the specified
device ID or physical device tag.

E_MULTIPLE There is more than one device with the same tag or
device ID on the same fieldbus network.

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with the
device.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifOpenPhysicalDevice

completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-22 © National Instruments Corporation

nifOpenSession

Purpose
Return a descriptor for an NI-FBUS Communications Manager session.

Format
nifError_t nifOpenSession (void *reserved, nifDesc_t *out_ud)

Input
reserved Reserved for future use; you must set this value to

NULL.

Output
out_ud A descriptor for the NI-FBUS Communications

Manager communications entity you request.

Context

Not applicable.

Description
nifOpenSession returns a descriptor for the NI-FBUS Communications Manager
session. When you open a session, the NI-FBUS Communications Manager establishes a
communication channel between your application and the NI-FBUS entity. All subsequent
descriptors you open are associated with this session, and all the NI-FBUS calls on these
descriptors communicate with the NI-FBUS entity through the communication channel
established during the nifOpenSession call.

The reserved argument is reserved for future use; you must set reserved to NULL.

Return Values
E_OK The call was successful.

E_SERVER_NOT_RESPONDING Either the NI-FBUS Communications Manager
server has not been started, or the server, in its
current state, cannot respond to the request.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-23 NI-FBUS Communications Manager Function Reference

nifOpenSession
Continued

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage, or a failure
of file access functions.

Chapter 1 Administrative Functions

NI-FBUS Communications Manager Function Reference 1-24 © National Instruments Corporation

nifOpenVfd

Purpose
Return a descriptor representing a Virtual Field Device (VFD).

Format
nifError_t nifOpenVfd (nifDesc_t ud, char *vfdTag,

nifDesc_t *out_ud)

nifError_t nifOpenVfd (nifDesc_t ud, NIFB_ORDINAL(n),
nifDesc_t *out_ud)

Input
ud A valid physical device descriptor.
vfdTag The tag of the VFD. To access by ordinal number

within a physical device, use the ORDINAL macro
in the nifbus.h header file.

Output
out_ud A descriptor for the VFD you request

Context
Physical device.

Description
nifOpenVfd returns a descriptor for the Virtual Field Device (VFD) you specify. A VFD
is defined as a logical device within a physical device. More than one VFD can reside
within a physical device. You must pass a valid physical device descriptor to this function.

There are two ways to specify the VFD: by tag, and by ordinal number. To open the VFD
by its tag, you must set the vfdTag parameter to the current tag of the VFD. The NI-FBUS
Communications Manager returns an error if it finds more than one VFD with the same tag.
You can obtain the list of VFD tags within a specified physical device with a call to
nifGetVFDList .

To open the VFD by its ordinal number, use the NIFB_ORDINAL macro. The first VFD of
your application in a physical device has the ordinal number zero. Notice that the
Management VFDs are not included in the ordinal numbering scheme.

Chapter 1 Administrative Functions

© National Instruments Corporation 1-25 NI-FBUS Communications Manager Function Reference

nifOpenVfd
Continued

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The input descriptor is invalid.

E_MULTIPLE There are identical VFD tags.

E_ORDINAL_NUM_OUT_OF The ordinal number is out of the device’s range.
_RANGE

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager communicated with the
device.

E_NOT_FOUND No VFD in the device has the specified VFD tag.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifOpenVfd completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

E_BAD_DEVICE_DATA The device returned some inconsistent information.

© National Instruments Corporation 2-1 NI-FBUS Communications Manager Function Reference

Core Fieldbus Functions
2

Chapter

This chapter lists and describes the core NI-FBUS functions.

You can use the NI-FBUS core functions to access fieldbus block parameters using any
type of descriptor. Because there are several ways to identify the fieldbus block parameters,
the NI-FBUS core functions accept special interface macros for the name argument, as well
as the standard TAG.PARAM identifier format. Refer to the Using Interface Macros section
at the end of this chapter for tips on using the interface macros.

Format of the Function Information

Function Names
The functions are in alphabetical order.

Purpose
The Purpose sections are brief statements of the purpose of each function.

Format
The Format sections show the format for calling each function.

Input
The Input sections show the input parameters for each function.

Output
The Output sections show the output parameters for each function.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-2 © National Instruments Corporation

Context
The Context sections tell you if you can use a function on a link, device, VFD, session, or
physical device.

Description
The Description sections describe the purpose and workings of each function.

Return Values
The Return Values sections list all the return values for each function and explain what
each one means.

Table 2-1. List of Core Functions

Function Purpose

nifFreeObjectAttributes Free an nifAttributes_t structure allocated
during a previous call to
nifGetObjectAttributes

nifGetObjectAttributes Read a single set of object attributes from the
Device Description (DD)

nifGetObjectSize Return the size in bytes of an object’s value

nifGetObjectType Returns the Object Dictionary type of the
specified object.

nifReadObject Read an object’s value from a device

nifReadObjectList Read the values of several objects from a
device or several devices.

nifWriteObject Write a parameter value to a device

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-3 NI-FBUS Communications Manager Function Reference

nifFreeObjectAttributes

Purpose
Free an nifAttributes_t structure allocated during a previous call to
nifGetObjectAttributes .

Format
nifError_t nifFreeObjectAttributes(nifAttributes_t *attr)

Input
attr Object attribute values your application reads using

nifGetObjectAttributes .

Output
Not applicable.

Context
Session, block, VFD, physical device, link.

Description
nifFreeObjectAttributes frees up the memory associated with the
nifAttributes_t structure specified by attr . attr must have been filled in by a
successful call to nifGetObjectAttributes . Once this function has been called, the
contents of attr are no longer valid.

If your application does not call this function after calling nifGetObjectAttributes ,
your application will not free up memory properly.

Return Values
E_OK The call was successful.

E_BAD_ARGUMENT attr was not a valid nifAttributes_t

structure.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-4 © National Instruments Corporation

nifGetObjectAttributes

Purpose
Read a single set of object attributes from the Device Description (DD).

Format
nifError_t nifGetObjectAttributes(nifDesc_t ud, char *name,

nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_INDEX(uint16 idx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),
nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_ITEM(uint32 item), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),
nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_BLOCK_ITEM(char *blocktag, uint32 item),
nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,
uint16 subidx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),
nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,
uint16 subidx), nifAttributes_t *attr)

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_NAME_SUBINDEX(char *name, uint16 subidx),
nifAttributes_t *attr)

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-5 NI-FBUS Communications Manager Function Reference

nifGetObjectAttributes
Continued

nifError_t nifGetObjectAttributes(nifDesc_t ud,
NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,
uint16 subidx), nifAttributes_t *attr)

Input
ud The descriptor (of any type if by name; VFD or

block if by index).
name Name of the object you need the DD attributes of,

in BLOCKTAG.PARAM form. To specify a structure
element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to
Table 2-4, Core Function Macros, at the end of
this chapter for an explanation of how to use
macros to specify the object.

Output
attr Object attribute values read from the DDOD

(Device Description Object Dictionary). The type
nifAttributes_t consists of a data structure
including a type code which selects from a list of
structures, one for each type of object. Other
information, including whether individual
attributes were successfully evaluated and whether
individual attributes are dynamic (meaning they
could change) is also provided. The structure is too
long to be included in this manual, so you can find
it in the NI-FBUS Communications Manager
header files.

Context
Session, block, VFD, physical device, link.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-6 © National Instruments Corporation

nifGetObjectAttributes
Continued

Description
The NI-FBUS Communications Manager reads the DD object attributes identified in the
call from the DDOD associated with ud and returned in attr . Notice that the object
attributes describe certain characteristics of the object, but do not contain the object’s
value. The DD object attributes also differ in content from the FMS OD Object Description
of the object.

For block, VFD, physical device, or link descriptors, the object name may refer to a
variable or a variable list. You would normally use nifGetObjectAttributes to read
the type description of a certain data type.

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the object.

For more detailed information concerning the nifAttributes_t structure, refer to the
Fieldbus Foundation Device Description Services User Guide, Chapter 3, Using
ddi_get_item.

Note: After a successful call to nifGetObjectAttributes , your application
must call nifFreeObjectAttributes when it is done using the attr

structure. Your application will not free up memory correctly if it does
not perform this operation.

Return Values
E_OK The call was successful.

E_CONFIG_ERROR Some configuration information, such as registry
information or network configuration information,
is incorrect.

E_INVALID_DESCRIPTOR The device descriptor does not correspond to a
VFD or block

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-7 NI-FBUS Communications Manager Function Reference

nifGetObjectAttributes
Continued

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

E_NOT_FOUND The referred object does not exist, or it does not
have object attributes.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_ORDINAL_NUM_OUT_OF The ordinal number is out of the device’s range.
_RANGE

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifGetObjectAttributes

completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-8 © National Instruments Corporation

nifGetObjectSize

Purpose
Return the size in bytes of an object’s value.

Format
nifError_t nifGetObjectSize(nifDesc_t ud, char *name,

int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud, NIFB_INDEX(uint16 idx),
int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),
int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_ITEM(uint32 item), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),
int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_BLOCK_ITEM(char *blocktag, uint32 item),
int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,
uint16 subidx), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),
int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,
uint16 subidx), int16 *size_in_bytes)

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_NAME_SUBINDEX(char *name, uint16 subidx),
int16 *size_in_bytes)

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-9 NI-FBUS Communications Manager Function Reference

nifGetObjectSize
Continued

nifError_t nifGetObjectSize(nifDesc_t ud,
NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,
uint16 subidx), int16 *size_in_bytes)

Input
ud The descriptor (of any type if by name, or of a

block or VFD if by index).
name Character string name of the object you need the

size of, in BLOCKTAG.PARAM form. To specify a
structure element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to
Table 2-4, Core Function Macros, at the end of
this chapter for an explanation of how to use
macros to specify the character string name.

Output
size_in_bytes The size of the object.

Context
Session, block, VFD, physical device, link.

Description
This function returns the size of the specified Object Value. You have to pass a buffer of
the returned size to nifReadObject to hold the value of the object.

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the character string name.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The specified descriptor is invalid.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-10 © National Instruments Corporation

nifGetObjectSize
Continued

E_NOT_FOUND The named object does not exist.

E_MULTIPLE Multiple identical tags were found; the function
failed.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifGetObjectSize completed.

E_ORDINAL_NUM_OUT_OF The ordinal number is out of the device’s range.
_RANGE

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-11 NI-FBUS Communications Manager Function Reference

nifGetObjectType

Purpose
Returns the Object Dictionary type of the specified object.

Format
nifError_t nifGetObjectType(nifDesc_t ud, char *objName,

nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_INDEX(uint16 idx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),
nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_ITEM(uint32 item), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),
nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_BLOCK_ITEM(char *blocktag, uint32 item),
nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,
uint16 subidx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),
nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,
uint16 subidx), nifObjTypeList_t *typeData)

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_NAME_SUBINDEX(char *name, uint16 subidx),
nifObjTypeList_t *typeData)

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-12 © National Instruments Corporation

nifGetObjectType
Continued

nifError_t nifGetObjectType(nifDesc_t ud,
NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,
uint16 subidx), nifObjTypeList_t *typeData)

Input
ud The descriptor of the session, link, physical device,

VFD or block if you are accessing by name. If you
are accessing by index, ud must be a VFD or
block.

objName The name of the parameter you want to read the
OD type of, in BLOCKTAG.PARAM form. Refer to
Table 2-4, Core Function Macros, at the end of
this chapter for an explanation of how to use
macros to specify the parameter. To specify a
named structure element, supply name in
BLOCKTAG.STRUCT.ELEMENT format. To specify
a type index returned by a previous call to
nifGetObjectType , use the NIFB_TYPE_INDEX

macro.

Output
typeData Object Type value read from the object dictionary

in the device. The nifObjTypeList_t data
structure is a record consisting of an object type
code, the number of elements, the blocktag to
which this object belongs (if applicable), and a
pointer to a list of elements of type
nifObjElem_t . The nifObjElem_t type is a
structure which consists of two elements: the OD
typeIndex of the element and the OD length of
the element.

Context
Session, block, VFD, DDOD, physical device, link.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-13 NI-FBUS Communications Manager Function Reference

nifGetObjectType
Continued

Description
nifGetObjectType is used to read the Object Dictionary type values of objects such as
block parameters, MIB objects or communication parameters from devices.

• If ud is the descriptor of a link, then objName must be in BLOCKTAG.PARAM_NAME
format.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if identical BLOCKTAG.PARAM_NAME tags are
found on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, and you use the
NIFB_INDEX macro, the index specified is the index of the object in the VFD.

• If ud is the descriptor of a function block, name must be in PARAM_NAME format.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter. Index
zero retrieves the OD type of the block itself.

• In all cases, you can expand PARAM_NAME to STRUCT.ELEMENT format to represent a
named element of a named structure.

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the parameter.

The nifObjTypeList_t data structure is defined as follows:

typedef struct {
uint8 objectCode;
uint16 numElems;
char blockTag[TAG_SIZE + 1];
nifObjElem_t *allElems;
} nifObjTypeList_t;

The nifObjElem_t data type is defined as follows:

typedef struct {
uint16 objTypeIndex;
uint16 objSize;
} nifObjElem_t;

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-14 © National Instruments Corporation

nifGetObjectType
Continued

The objectCode returned in the data structure nifObjTypeList_t is as specified in the
FMS Specifications in the Fieldbus Foundation Specifications, and is listed in Table 2-2 for
your convenience.

Table 2-2. Object Codes for the nifObjTypeList_t Data Structure

Object
Object Code
in fbtypes.h

Domain ODT_DOMAIN

Program Invocation ODT_PI

Event ODT_EVENT

Data Type ODT_SIMPLETYPE

Data Type

Structure

Description

ODT_STRUCTTYPE

Simple Variable ODT_SIMPLEVAR

Array ODT_ARRAY

Record ODT_RECORD

Variable List ODT_VARLIST

For object codes ODT_STRUCTTYPE, ODT_SIMPLEVAR, ODT_ARRAY, and ODT_RECORD, the
list of elements in allElements contains the typeIndex and the size of each component
element. For example, the following fragment of pseudocode gets the type information for
a structured object and does something with the type information for each element:

nifObjTypeList_t typeInfo;
nifDesc_t aiBlock;
int loop;

...

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-15 NI-FBUS Communications Manager Function Reference

nifGetObjectType
Continued

nifGetObjectType(aiBlock, "OUT", &typeInfo);
for (loop=0; loop < typeInfo.numElems; loop++)
{

doSomethingWithElement(typeInfo.allElems[loop]);
}

For variable list objects (type ODT_VARLIST), you must call nifGetObjectType for each
element in the list of elements with the typeIndex of the element returned in the list with
the first nifGetObjectType call. The typeIndex of the element returned in the list in
this case is the relative index of the element within the block, whose name is returned by
blockTag . These subsequent calls to nifGetObjectType should use the NIFB_INDEX

macro to specify the typeIndex returned by the first call.

For example, the following fragment of pseudocode gets the type information for a variable
list object and does something with the type information for each variable:

nifObjTypeList_t typeInfo, varTypeInfo;
nifDesc_t aiBlock;
int loop;

...

nifGetObjectType(aiBlock, "VIEW_1", &typeInfo);
if (typeinfo.objectCode == ODT_VARLIST)
{

for (loop=0; loop < typeInfo.numElems; loop++)
{

nifGetObjectType(aiBlock,
NIFB_INDEX(typeInfo.allElems[loop].objTypeIndex),
&varTypeInfo);

doSomethingWithVariable(varTypeInfo);
}

}

For all successful calls to nifGetObjectType , you must call nifFreeObjectType to
clean up memory allocated within these structures.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-16 © National Instruments Corporation

nifGetObjectType
Continued

For objects with the object codes ODT_DOMAIN, ODT_PI, ODT_EVENT, and
ODT_SIMPLETYPE, only the object type is returned, and the list of elements allElems in
the structure nifObjTypeList_t is empty. The list of standard data types for an object
which has the object code ODT_SIMPLETYPE is also as specified in the FMS Specifications
in the Fieldbus Foundation Specifications and is listed in Table 2-3 for your convenience.

Table 2-3. Standard Data Types for Objects with the Object Code ODT_SIMPLETYPE

Data Type
objTypeIndex
in fbtypes.h

Number of
Octets (Size)

Boolean FF_BOOLEAN 1

Integer8 FF_INTEGER8 1

Integer16 FF_INTEGER16 2

Integer32 FF_INTEGER32 4

Unsigned8 FF_UNSIGNED8 1

Unsigned16 FF_UNSIGNED16 2

Unsigned32 FF_UNSIGNED32 4

Floating Point FF_FLOAT 4

Visible String FF_VISIBLE_STRING 1, 2, 3,...

Octet String FF_OCTET_STRING 1, 2, 3,...

Date FF_DATE 7

Time of Day FF_TIMEOFDAY 4 or 6

Time Difference FF_TIME_DIFF 4 or 6

Bit String FF_BIT_STRING 1, 2, 3,...

Time Value FF_TIME_VALUE 8

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you specified is not valid.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-17 NI-FBUS Communications Manager Function Reference

nifGetObjectType
Continued

E_TIMEOUT The device containing the object is present but did
not respond within the timeout period.

E_MULTIPLE More than one identical tag was found; the
function failed.

E_NOT_FOUND The NI-FBUS Communications Manager could not
find the specified object.

E_BAD_ARGUMENT The object specified by index was that of a simple
data type, which must already be known to you.

E_RESOURCES The NI-FBUS Communications Manager is unable
to allocate some system resource; this is usually a
memory problem.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager, under
which the descriptor was opened, has been lost or
closed.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-18 © National Instruments Corporation

nifReadObject

Purpose
Read an object’s value from a device.

Format
nifError_t nifReadObject(nifDesc_t ud, char *name, void *buffer,

uint8 *length)

nifError_t nifReadObject(nifDesc_t ud, NIFB_INDEX(uint16 idx),
void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),
void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_ITEM(uint32 item), void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),
void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_BLOCK_ITEM(char *blocktag, uint32 item),
void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,
uint16 subidx), void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),
void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,
uint16 subidx), void *buffer, uint8 *length)

nifError_t nifReadObject(nifDesc_t ud,
NIFB_NAME_SUBINDEX(char *name, uint16 subidx),
void *buffer, uint8 *length)

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-19 NI-FBUS Communications Manager Function Reference

nifReadObject
Continued

nifError_t nifReadObject(nifDesc_t ud,
NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,
uint16 subidx), void *buffer, uint8 *length)

Input
ud The descriptor of the session, link, physical device,

VFD or block if reading by name. If reading by
index, ud must be a VFD or block.

name Name of the parameter your application reads, in
BLOCKTAG.PARAM format. To specify a structure
element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to
Table 2-4, Core Function Macros, at the end of
this chapter for an explanation of how to use
macros to specify the parameter.

length The size of the buffer to hold the result, in bytes.

Output
buffer The value that the NI-FBUS Communications

Manager reads.
length The actual size of the resulting data, in bytes.

Context
Session, block, VFD, physical device, link.

Description
nifReadObject reads the values of objects such as block parameters or communications
parameters from devices.

• If ud is the descriptor of a link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The call fails if multiple identical BLOCKTAG.PARAM_NAME
tags are located on the bus. Index access is not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, then name must be
in the format BLOCKTAG.PARAM_NAME.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-20 © National Instruments Corporation

nifReadObject
Continued

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used, the index specified is the relative index of the
parameter within the block. Relative indices start at 1 for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT
format to represent a named element of a named structure.

In each case, name can represent either a variable or a variable list object. You should
determine the size of the object beforehand, possibly with a call to nifGetObjectSize . If
the object is larger than the buffer size specified in length , the NI-FBUS Communications
Manager returns an error, and none of the data in the buffer is valid.

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the parameter.

The data nifReadObject returns is in Fieldbus Foundation FMS Application format. You
must accomplish conversion of the data to the internal format of your processor and
compiler.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor does not correspond to a VFD
or function block; this descriptor is no longer valid.

E_NOT_FOUND The referred object does not exist.

E_OBJECT_ACCESS_DENIED The NI-FBUS Communications Manager interface
does not have the required privileges. The access
group you belong to is not allowed to acknowledge
the event, or the password you used is wrong.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_BUF_TOO_SMALL The object is larger than your buffer.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-21 NI-FBUS Communications Manager Function Reference

nifReadObject
Continued

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifReadObject completed.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_PARAMETER_CHECK The device reported a violation of
parameter-specific checks.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-22 © National Instruments Corporation

nifReadObjectList

Purpose
Read the values of several objects from a device or several devices.

Format
nifError_t nifReadObjectList (nifDesc_t ud, char **blkParamList,

uint16 numObjects, void *buffer, uint16 *length,
nifError_t *errArray)

Input
ud The descriptor of the session, link, physical device,

VFD, or block.
blkParamList The list of parameter names your application reads

in the form of BLOCKTAG.PARAM. To specify any
parameter by index use the NIFB_INDEX macro.
To specify any parameter that is an array or
structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro. To specify a
named structure element, supply the parameter
name in the form of
BLOCKTAG.STRUCT.ELEMENT.

numObjects The number of parameter names specified in
blkParamList . (The maximum number of
objects that can be specified in blkParamList is
given by the constant MAX_LIST_ELEMS.)

length The size of the buffer to hold the result of all the
parameter reads, in bytes.

Output
buffer The values of all the parameters read, stored as a

continuous string of bytes.
length The cumulative size of the actual resulting data in

bytes.
errArray The error codes resulting from each parameter

read. The error codes have a one to one
correspondence with the order in which the
parameters are specified in blkParamList .

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-23 NI-FBUS Communications Manager Function Reference

nifReadObjectList
Continued

Context
Session, link, device, VFD, block.

Description
nifReadObjectLis t reads the values of objects specified in the list, which may include
block parameters or communication parameters from devices.

• If ud is the descriptor of a link, each name in blkParamList must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for any given name specified
by the blocktag.param format in blkParamList . The read of this particular object
fails if identical BLOCKTAG.PARAM_NAME tags are located on the bus. Index access is
not allowed for session descriptors.

• If ud is the descriptor of a general function block application VFD, any name in
blkParamList must be in the format blocktag.param_name .

• If ud is the descriptor of a function block, any name in blkParamList must be in the
format PARAM_NAME.

• If ud is the descriptor of a function block and the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro is used to specify a name in blkParamList , the
index specified is the relative index of the parameter within the block. Relative indices
start at 1 for the first block parameter.

• In all descriptor cases, any PARAM_NAME specified in blkParamList can be expanded
to STRUCT.ELEMENT format to represent a named element of a named structure.

For each name specified in blkParamList , the name can either represent a variable or a
variable list object. You should determine the size of each object specified in
blkParamList beforehand, possibly with a call to nifGetObjectSize . If the cumulative
size of all the objects specified in the list is larger than the buffer size specified in length ,
the NI-FBUS Communications Manager returns an error. The data in the buffer is valid for
however many objects were successfully read. The success or failure of the read for every
object specified in blkParamList is indicated in errArray , the array in which error
codes are returned. The error code in the first element of errArray is the error code
indicating success or failure upon read of the first object specified in blkParamList , and
so on.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-24 © National Instruments Corporation

nifReadObjectList
Continued

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the parameters in blkParamList .

The data nifReadObjectList returns is in Fieldbus Foundation FMS Application format.
You must accomplish conversion of the data to the internal format of your processor and
compiler.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor is no longer valid.

E_BUF_TOO_SMALL The size of the data resulting from the read of all
objects specified in the list is larger than your
buffer.

E_RESOURCES A system resource problem occurred. The resource
problem is usually a memory shortage.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-25 NI-FBUS Communications Manager Function Reference

nifWriteObject

Purpose
Write a parameter value to a device.

Format
nifError_t nifWriteObject(nifDesc_t ud, char *name, void *buffer,

uint8 length)

nifError_t nifWriteObject(nifDesc_t ud, NIFB_INDEX(uint16 idx),
void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_INDEX_SUBINDEX(uint16 idx, uint16 subidx),
void *buffer, uint8 length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_ITEM(uint32 item), void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_ITEM_SUBINDEX(uint32 item, uint16 subidx),
void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_BLOCK_ITEM(char *blocktag, uint32 item),
void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_BLOCK_ITEM_SUBINDEX(char *blocktag, uint32 item,
uint16 subidx), void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_BLOCK_INDEX(char *blocktag, uint16 idx),
void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_BLOCK_INDEX_SUBINDEX(char *blocktag, uint16 idx,
uint16 subidx), void *buffer, uint8 *length)

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_NAME_SUBINDEX(char *name, uint16 subidx),
void *buffer, uint8 *length)

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-26 © National Instruments Corporation

nifWriteObject
Continued

nifError_t nifWriteObject(nifDesc_t ud,
NIFB_BLOCK_NAME_SUBINDEX(char *blocktag, char *name,
uint16 subidx), void *buffer, uint8 *length)

Input
ud The descriptor of the session, link, physical device,

VFD or block if writing by name. If writing by
index, ud must be a VFD or block.

name Name of the parameter you want the NI-FBUS
Communications Manager to write, in
BLOCKTAG.PARAM form. To specify a structure
element by name, specify the name in
BLOCKTAG.STRUCT.ELEMENT format. Refer to
Table 2-4, Core Function Macros, at the end of
this chapter for an explanation of how to use
macros to specify the parameter.

buffer The value you want the NI-FBUS Communications
Manager to write.

length The size of the data buffer, in bytes.

Output
Not applicable.

Context
Block, VFD, physical device, link, session.

Description
nifWriteObject writes the values of a function block parameter to a device.

• If ud is the descriptor of a session or link, then name must be in the format
BLOCKTAG.PARAM_NAME.

• If ud is a session descriptor, then all links are searched for the given
BLOCKTAG.PARAM_NAME. The function fails if more than one identical
BLOCKTAG.PARAM_NAME match is found.

• If ud is a physical device descriptor, a parameter is written by
BLOCKTAG.PARAM_NAME.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-27 NI-FBUS Communications Manager Function Reference

nifWriteObject
Continued

• If ud is the descriptor of a general Virtual Field Device, then name must be in the
format BLOCKTAG.PARAM_NAME.

• If ud is the descriptor of a function block, name must be in the format PARAM_NAME.

• If ud is the descriptor of a function block, and you use the NIFB_INDEX or
NIFB_INDEX_SUBINDEX macro, the index specified is the relative index of the
parameter within the block. Relative indices start at one for the first parameter.

• In all descriptor cases, you can expand PARAM_NAME itself to STRUCT.ELEMENT
format to represent a named element of a named structure.

Refer to Table 2-4, Core Function Macros, at the end of this chapter for an explanation of
how to use macros to specify the parameter.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The device descriptor does not correspond to a
VFD.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_ORDINAL_NUM_OUT_OF The parameter is out of the device’s range.
_RANGE

E_OBJECT_ACCESS The device does not support write access to this
_UNSUPPORTED object.

E_MULTIPLE The NI-FBUS Communications Manager found
more than one identical tag; the function failed.

E_SM_NOT_OPERATIONAL The device is present, but cannot respond because
it is at a default address.

E_COMM_ERROR The NI-FBUS Communications Manager failed to
communicate with the device.

E_PARAMETER_CHECK The device reported a violation of
parameter-specific checks.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-28 © National Instruments Corporation

nifWriteObject
Continued

E_EXCEED_LIMIT The device reported that the value exceeds the
limit.

E_WRONG_MODE_FOR The device reported that the current function
_REQUEST block mode does not allow you to write to the

parameter.

E_WRITE_IS_PROHIBITED The device reported that the WRITE_LOCK

parameter value is set. The WRITE_LOCK

parameter prohibits writing to the name parameter.

E_DATA_NEVER_WRITABLE The specified object is read-only.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 2 Core Fieldbus Functions

© National Instruments Corporation 2-29 NI-FBUS Communications Manager Function Reference

Using Interface Macros
This section contains tips for using the NI-FBUS Communications Manager interface
macros. These macros are defined in the header file nifbus.h .

Table 2-4. Core Function Macros

Descriptor Type
You Have

Parameter Information
You Have Macro to Use

Block Descriptor Name Normal Access by Name

Block Descriptor Name and Subindex NIFB_NAME_SUBINDEX

Block Descriptor Relative Index within the BlockNIFB_INDEX

Block Descriptor Relative Index and Subindex NIFB_INDEX_SUBINDEX

Block Descriptor DD Item ID NIFB_ITEM

Block Descriptor DD Item ID and Subindex NIFB_ITEM_SUBINDEX

Non-Block Descriptor Name Normal Access Using
BLOCKTAG.PARAM Format

Non-Block Descriptor Name and Subindex NIFB_BLOCK_NAME_SUBINDEX

Non-Block Descriptor Relative Index within the BlockNIFB_BLOCK_INDEX

Non-Block Descriptor Relative Index and Subindex NIFB_BLOCK_INDEX_SUBINDEX

Non-Block Descriptor DD Item ID NIFB_BLOCK_ITEM

Non-Block Descriptor DD Item ID and Subindex NIFB_BLOCK_ITEM_SUBINDEX

As shown in Table 2-4, you can specify the parameter your application reads in the name

parameter in the following ways:

• To specify an object by index, use the NIFB_INDEX macro in the nifbus.h header
file.

• To specify an array or structure element by index and subindex, use the
NIFB_INDEX_SUBINDEX macro.

• If you already have a block descriptor, you can specify an object by its item ID with
the NIFB_ITEM macro, or you can specify a subelement by its item ID with the
NIFB_ITEM_SUBINDEX macro.

Chapter 2 Core Fieldbus Functions

NI-FBUS Communications Manager Function Reference 2-30 © National Instruments Corporation

• If you do not have a block descriptor, you have the following choices:

– You can use the NIFB_BLOCK_ITEM macro to specify an item.

– You can use the NIFB_BLOCK_ITEM_SUBINDEX macro to specify a subelement.

– You can use the NIFB_BLOCK_INDEX macro specify an object by index.

– You can use the NIFB_BLOCK_INDEX_SUBINDEX macro to specify a subindex.

You can find all these macros in the nifbus.h header file.

© National Instruments Corporation 3-1 NI-FBUS Communications Manager Function Reference

Alert and Trend Functions
3

Chapter

This chapter lists and describes the NI-FBUS alert and trend functions.

Format of the Function Information

Function Names
The functions are in alphabetical order.

Purpose
The Purpose sections are brief statements of the purpose of each function.

Format
The Format sections show the format for calling each function.

Input
The Input sections show the input parameters for each function.

Output
The Output sections show the output parameters for each function.

Context
The Context sections tell you if you can use a function on a link, device, VFD, session, or
physical device.

Chapter 3 Alert and Trend Functions

NI-FBUS Communications Manager Function Reference 3-2 © National Instruments Corporation

Description
The Description sections describe the purpose and workings of each function.

Return Values
The Return Values sections list all the return values for each function and explain what
each one means.

Table 3-1. Alert Functions

Function Purpose

nifAcknowledgeAlarm Acknowledge an alarm received

nifWaitAlert Wait for an alert (an event or an alarm) from a
specific device or from any device

Table 3-2. Trend Function

Function Purpose

nifWaitTrend Wait for a trend from a specific device or from
any device

Chapter 3 Alert and Trend Functions

© National Instruments Corporation 3-3 NI-FBUS Communications Manager Function Reference

nifAcknowledgeAlarm

Purpose
Acknowledge an alarm received.

Format
nifError_t nifAcknowledgeAlarm(nifDesc_t ud, char *alarmName)

Input
ud A session, link, physical device, VFD, or block

descriptor for the alarm
alarmName The name of the alarm object that you want the

NI-FBUS Communications Manager to
acknowledge. If ud is a block descriptor,
alarmName should be the parameter name,
otherwise alarmName should be in
BLOCKTAG.PARAMNAME format.

Context
Block, VFD, physical device, link, session.

Description
nifAcknowledgeAlarm acknowledges an alarm notification from a device. The NI-FBUS
Communications Manager clears the unacknowledged field associated with the alarm
object alarmName .

If ud is a block descriptor, the alarmName is the same as the alarmOrEventName field of
the alert data you get in the nifWaitAlert call. If ud is a session, link, VFD, or physical
device descriptor, then alarmName is in BLOCKTAG.PARAMNAME format, where blockTag

is the same as the blockTag field of the alert data in the nifWaitAlert function.

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The device descriptor is not a valid descriptor.

Chapter 3 Alert and Trend Functions

NI-FBUS Communications Manager Function Reference 3-4 © National Instruments Corporation

nifAcknowledgeAlarm
Continued

E_OBJECT_ACCESS_DENIED The NI-FBUS Communications Manager interface
does not have the required privileges. The access
group you belong to is not allowed to acknowledge
the event, or the password you used is wrong.

E_COMM_ERROR An error occurred when the NI-FBUS
Communications Manager tried to communicate
with the device.

E_ALARM_ACKNOWLEDGED The alarm has already been acknowledged.

E_MULTIPLE There are identical block tags.

E_NOT_FOUND There is no such block in the device or VFD with
the specified tag.

E_SYMBOL_FILE_NOT_FOUND The NI-FBUS Communications Manager could not
find the symbol file.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 3 Alert and Trend Functions

© National Instruments Corporation 3-5 NI-FBUS Communications Manager Function Reference

nifWaitAlert

Purpose
Wait for an alert (an event or an alarm) from a specific device or from any device.

Format
nifError_t nifWaitAlert(nifDesc_t ud, nifAlertData_t *aldata,

uint8 alertPriority)

Input
ud The descriptor of the session, link, physical device,

VFD, block, or link the alert comes from.
alertPriority Lowest priority of the alert coming in that you

want to wait on.

Output
aldata The information about the specific alert.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, a physical device, a VFD, or a block. If ud is a
VFD descriptor, then the NI-FBUS Communications Manager waits for an alert from any
block in the Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager
waits for an alarm or event from the block ud refers to. If ud represents a link,
nifWaitAlert completes when an event is received from any device connected to that
link. If the descriptor is a session descriptor, the function waits on any event from any
attached link.

nifWaitAlert waits indefinitely until the NI-FBUS Communications Manager receives
an alert with a priority greater than or equal to the input alert priority. Your application can
have a dedicated thread which does nifWaitAlert only.

When the NI-FBUS Communications Manager interface receives an alert, the aldata

parameter is filled in with the information about the alert. The form of
aldata->alertData depends on the value of aldata->alertType .
alData->alarmOrEventName is the name of the alarm parameter or event parameter that

Chapter 3 Alert and Trend Functions

NI-FBUS Communications Manager Function Reference 3-6 © National Instruments Corporation

nifWaitAlert
Continued

caused the alert. alData->deviceTag and alData->blockTag are the tags of the device
and the block of the alarm, respectively.

nifWaitAlert sends a confirmation to the device, informing the alerting device that the
alert was received. Note that this is a separate step from alert acknowledgment, which must
be carried out for alarms using nifAcknowledgeAlarm .

If you have multiple threads waiting to receive the same alert, the NI-FBUS
Communications Manager sends a copy of the alert to all the waiting threads. Your
application must ensure that only one thread acknowledges any one alarm with a call to
nifAcknowledgeAlarm . You can abort a pending nifWaitAlert call by closing the
descriptor on which the call was made.

The alertType parameter can be ALERT_ANALOG, ALERT_DISCRETE, or
ALERT_UPDATE.

nifAlertData_t is defined as follows:

typedef struct nifAlertData_t{
uint8 alertType;
char deviceTag[TAG_SIZE + 1];
char blockTag[TAG_SIZE + 1];
char alarmOrEventName [TAG_SIZE + 1];
uint8 alertKey;
uint8 standardType;
uint8 mfrType;
uint8 messageType;
uint8 priority;
nifTime_t timeStamp;
uint16 subCode;
uint16 unitIndex;
union {

float floatAlarmData;
uint8 discreteAlarmData;
uint16 staticRevision;

} alertData;
} nifAlertData_t ;

Chapter 3 Alert and Trend Functions

© National Instruments Corporation 3-7 NI-FBUS Communications Manager Function Reference

nifWaitAlert
Continued

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you gave is invalid.

E_OBSOLETE_DESC The input descriptor is no longer valid. It was
closed before nifWaitAlert completed.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

Chapter 3 Alert and Trend Functions

NI-FBUS Communications Manager Function Reference 3-8 © National Instruments Corporation

nifWaitTrend

Purpose
Wait for a trend from a specific device or from any device.

Format
nifError_t nifWaitTrend(nifDesc_t ud, nifTrendData_t *trend)

Input
ud The descriptor of the session, physical device,

VFD, block, or link that the trend comes from.

Output
trend The information about the specific trend.

Context
Block, VFD, physical device, link, session.

Description
ud represents a descriptor of a session, link, physical device, VFD, or block. If ud is a VFD
descriptor, then the NI-FBUS Communications Manager waits for a trend from any block
in the Virtual Field Device. If ud is a block, the NI-FBUS Communications Manager waits
for a trend from the block ud identifies. If ud represents a link, the call completes when a
trend is received from any device connected to that link. If the descriptor is a session
descriptor, nifWaitTrend waits on any trend from any attached link.

nifWaitTrend waits indefinitely until the NI-FBUS Communications Manager interface
receives a trend. Your application can have a dedicated thread which does nifWaitTrend

only.

When a trend comes in, the trend parameter is filled in with the information about the
trend. The form of trend->trendData depends on the value of trend->trendType .
There are three trend types: TREND_FLOAT, TREND_DISCRETE and TREND_BITSTRING. If
the trend type is TREND_FLOAT, the trend->trendData is a 16-element array of floating
point numbers. If the trend type is TREND_DISCRETE, the trend->trendData is a
16-element array of 1-byte integers. If the trend type is TREND_BITSTRING, the
trend->trendData is a 16-element array of 2-byte bit strings, which is equivalent to a

Chapter 3 Alert and Trend Functions

© National Instruments Corporation 3-9 NI-FBUS Communications Manager Function Reference

nifWaitTrend
Continued

32-element array of 1-byte integers. deviceTag and blockTag are the device and block
tags of the parameter that has the trend; paramName is the name of the parameter.

If you have multiple threads waiting to receive the same trend, the NI-FBUS
Communications Manager sends a copy of the trend to all the waiting threads. You can
abort a pending nifWaitTrend call by closing the descriptor on which the call was made.

The trend type can be TREND_FLOAT, TREND_DISCRETE, or TREND_BITSTRING. The
sample type can be SAMPLE_INSTANT or SAMPLE_AVERAGE.

nifTrendData_t is defined as follows:

typedef struct nifTrendData_t {
uint8 trendType;
char deviceTag[TAG_SIZE + 1];
char blockTag[TAG_SIZE + 1];
char paramName[TAG_SIZE + 1];
uint8 sampleType;
uint32 sampleInterval;
nifTime_t lastUpdate;
uint8 status[16];
union {

float f[16];
uint8 d[16];
uint8 bs[32];

} trendData;
} nifTrendData_t;

Return Values
E_OK The call was successful.

E_INVALID_DESCRIPTOR The descriptor you gave is not valid.

E_SERVER_CONNECTION_LOST The session established with the NI-FBUS
Communications Manager for this descriptor has
been closed or lost.

© National Instruments Corporation A-1 NI-FBUS Communications Manager Function Reference

Customer Communication

Appendix

For your convenience, this appendix contains forms to help you gather the information necessary to
help us solve technical problems and a form you can use to comment on the product documentation.
When you contact us, we need the information on the Technical Support Form and the configuration
form, if your manual contains one, about your system configuration to answer your questions as
quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board service,
an FTP site, a Fax-on-Demand system, and e-mail support. If you have a hardware or software
problem, first try the electronic support systems. If the information available on these systems does
not answer your questions, we offer fax and telephone support through our technical support
centers, which are staffed by application engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions on
how to use the bulletin board and FTP services and for BBS automated information, call
(512) 795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
wide range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)
You can submit technical support questions to the applications engineering team through e-mail at
the Internet address listed below. Remember to include your name, address, and phone number so
we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Title ___

Company ___

Address __

__

Fax (____) _________________________ Phone (____) ___________________________

Computer brand ___________________ Model ______________ Processor ________________

Operating system (include version number) __

Clock Speed ________ MHz RAM _________ MB Display adapter ________________

Mouse ____ yes _____ no Other adapters installed _____________________________

Hard disk capacity ________ MB Brand __

Instruments used __

National Instruments hardware product model _____________________ Revision ____________

Configuration __

National Instruments software product ___________________________ Version ____________

Configuration __

The problem is ___

__

__

__

List any error messages __

__

__

The following steps will reproduce the problem ___

__

__

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration,
and use this form as a reference for your current configuration. Completing this form accurately
before contacting National Instruments for technical support helps our applications engineers answer
your questions more efficiently.

National Instruments Products
Hardware Revision ___

Interrupt Level of Hardware __

DMA Channels of Hardware ___

Base I/O Address of Hardware __

NI-FBUS Communications Manager Software Version __________________________________

Other Products
Computer Make and Model __

Microprocessor __

Clock Frequency __

Type of Video Board Installed __

Operating System __

Operating System Version ___

Operating System Mode ___

Programming Language ___

Programming Language Version __

Other Boards in System ___

Base I/O Address of Other Boards ___

DMA Channels of Other Boards __

Interrupt Level of Other Boards ___

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-FBUSCommunications Manager Function Reference Manual

Edition Date: July 1997

Part Number: 321288B-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Thank you for your help.

Name __

Title ___

Company ___

Address __

__

Phone (____) ________________________ Fax (_____) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-FBUS Communications Manager Function Reference

Glossary

Prefix Meaning Value

n- nano- 10–9

µ- micro- 10–6

m- milli- 10–3

A

AI Analog Input. A type of function block.

alarm A notification the NI-FBUS Communications Manager software sends
when it detects that a block leaves or returns to a particular state.

alert An alarm or an event.

argument A value you pass in a function call. Sometimes referred to as a parameter,
but this documentation uses a different meaning for parameter, which is
included in this glossary.

ASCII American Standard Code for Information Interchange.

B

block A logical software unit that makes up one named copy of a block and the
associated parameters its block type specifies. The values of the
parameters persist from one invocation of the block to the next. It can be
a resource block, transducer block, or function block residing within a
VFD.

Glossary

NI-FBUS Communications Manager Function Reference G-2 © National Instruments Corporation

block context Describes a category of NI-FBUS functions that accept block descriptors.

block view objects Variable list objects used to read multiple block parameters at once.

D

DDOD Device Description Object Dictionary. The Device Description binary
file.

descriptor A number returned to the application by the NI-FBUS Communications
Manager, used to specify a target for future NI-FBUS calls.

device ID An identifier for a device that the manufacturer assigns. Device IDs must
be unique to the device; no two devices can have the same device ID.

device tag A name you assign to a fieldbus device.

E

entity A certain thing, such as a process, object, device, or event.

event An occurrence on a device that causes a fieldbus entity to send the
fieldbus event message.

F

fieldbus An all-digital, two-way communication system that connects control
systems to instrumentation.

Fieldbus Messaging The layer of the communication stack that defines a model for
Specification (FMS) applications to interact over the fieldbus. The services FMS provides

allow you to read and write information about the OD, read and write the
data variables described in the OD, and perform other activities such as
uploading/downloading data, and invoking programs inside a device.

function block A named block consisting of one or more input, output, and contained
parameters. The block performs some control function as its algorithm.
function blocks are the core components you control a system with. The
Fieldbus Foundation defines standard sets of function blocks. There are
ten function blocks for the most basic control and I/O functions.
Manufacturers can define their own function blocks.

Glossary

© National Instruments Corporation G-3 NI-FBUS Communications Manager Function Reference

function block A list of times in the macrocycle when the function block will
execution schedule begin to execute its algorithm.

I

index An integer that the fieldbus specification assigns to a fieldbus object or a
device that you can use to refer to the object.

L

link A group of fieldbus devices connected across a single wire pair with no
intervening bridges.

Link Active Schedule A schedule of times in the macrocycle when devices must publish their
output values on the fieldbus.

Link Active A device that is responsible for keeping a link operational. The LAS
Scheduler (LAS) executes the link schedule, circulates tokens, distributes time and probes

for new devices.

link context Describes a category of NI-FBUS calls that accept link descriptors.

link ID See link identifier.

link identifier A number that specifies a link.

Link Master device A device that is capable of becoming the LAS.

M

macrocycle One iteration of a the process control loop.

O

object attribute A part of the machine-readable description of a fieldbus object.

Object Dictionary (OD) A structure in a device that describes data that can be communicated on
the fieldbus. The OD is a lookup table that gives information such as
data type and units about a value that can be read from or written to a
device.

Glossary

NI-FBUS Communications Manager Function Reference G-4 © National Instruments Corporation

Object Dictionary A value in the object dictionary used to refer to a single object.
index

object value The actual data value associated with a fieldbus object.

P

parameter One of a set of network-visible values that makes up a function block.

physical device A single device residing at a unique address on the fieldbus.

physical device Describes a category of NI-FBUS functions that accept physical device
context descriptors.

process variable A common fieldbus function block parameter representing some value in
the process being controlled.

publisher A device that has at least one function block with its output value
connected to the input of another device.

R

resource block A special block containing parameters that describe the operation of the
device.

S

sample type Specifies how trends are sampled on a device, whether by averaging data
or by instantaneous sampling.

session A connection between your application and an NI-FBUS entity.

session context Describes a category of NI-FBUS functions that accept session
descriptors.

stale Data that has not been updated for stale_limit number of
macrocycles, where the stale limit is a parameter of the connection.

subscriber A device that has at least one function block with its input value
connected to the output of another device.

Glossary

© National Instruments Corporation G-5 NI-FBUS Communications Manager Function Reference

symbol file A Fieldbus Foundation or device manufacturer-supplied file that contains
the ASCII names for all the objects in a device.

T

tag A name you can define for a block, VFD, or device.

thread An operating system object that consists of a flow of control within a
process. In some operating systems, a single process can have multiple
threads, each of which can access the same data space within the process.
However, each thread has its own stack and all threads can execute
concurrently with one another (either on multiple processors, or by
time-sharing a single processor).

timeout A period of time after which an error condition is raised if some event
has not occurred.

transducer block A block that is an interface to the physical, sensing hardware in the
device. It also performs the digitizing, filtering, and scaling
conversions needed to present input data to function blocks, and
converts output data from function blocks. transducer blocks decouple
the function blocks from the hardware details of a given device,
allowing generic indication of function block input and output.
Manufacturers can define their own transducer blocks.

trend A fieldbus object that allows a device to sample a process variable
periodically, then transmit a history of the values on the network.

V

variable list A list of variables you can access with a single fieldbus transaction.

VFD context Describes a category of NI-FBUS functions that accept VFD descriptors.

Virtual Field A model for remotely viewing data described in the object dictionary.
Device (VFD)

© National Instruments Corporation I -1 NI-FBUS Communications Manager Function Reference

Index

A
administrative functions

format of function information,
1-1 to 1-2

list of functions (table), 1-2
nifClose, 1-3 to 1-4
nifGetBlockList, 1-5 to 1-7
nifGetDeviceList, 1-8 to 1-10
nifGetInterfaceList, 1-11 to 1-12
nifGetVFDList, 1-13 to 1-14
nifOpenBlock, 1-16 to 1-17
nifOpenLink, 1-18 to 1-19
nifOpenPhysicalDevice, 1-20 to 1-21
nifOpenSession, 1-22 to 1-23
nifOpenVfd, 1-24 to 1-25

alert and trend functions
format of function information,

3-1 to 3-2
lists of functions (tables), 3-2
nifAcknowledgeAlarm, 3-3 to 3-4
nifWaitAlert, 3-5 to 3-7
nifWaitTrend, 3-8 to 3-9

B
bulletin board support, A-1

C
core functions

format of function information,
2-1 to 2-2

list of functions (table), 2-2
nifFreeObjectAttributes, 2-3
nifGetObjectAttributes, 2-4 to 2-7
nifGetObjectSize, 2-8 to 2-10
nifGetObjectType, 2-11 to 2-17
nifReadObject, 2-18 to 2-21
nifReadObjectList, 2-22 to 2-24
nifWriteObject, 2-25to 2-28
using NI-FBUS interface macros,

2-29 to 2-30
customer communication, xi, A-1 to A-2

D
documentation

conventions used in manual, xi
how to use manual set, ix-x
organization of manual, x
related documentation, xi

E
electronic support services, A-1 to A-2
e-mail support, A-2

Index

NI-FBUS Communications Manager Function Reference I -2 © National Instruments Corporation

F
Fax-on-Demand support, A-2
FTP support, A-1

I
interface macros, NI-FBUS, 2-29 to 2-30

M
manual. See documentation.

N
nifAcknowledgeAlarm, 3-3 to 3-4
NI-FBUS interface macros, 2-29 to 2-30

core function macros (table), 2-29
location in nifbus.h header file, 2-30
specifying, 2-29 to 2-30

nifClose function, 1-3 to 1-4
nifFreeObjectAttributes function, 2-3
nifGetBlockList function, 1-5 to 1-7
nifGetDeviceList function, 1-8 to 1-10
nifGetInterfaceList function, 1-11 to 1-12
nifGetObjectAttributes function, 2-4 to 2-7
nifGetObjectSize function, 2-8 to 2-10
nifGetObjectType function, 2-11 to 2-17
nifGetVFDList function, 1-13 to 1-14
nifOpenBlock function, 1-16 to 1-17
nifOpenLink function, 1-18 to 1-19
nifOpenPhysicalDevice function,

1-20 to 1-21
nifOpenSession function, 1-22to 1-23
nifOpenVfd function, 1-24 to 1-25
nifReadObject function, 2-18 to 2-21
nifReadObjectList function, 2-22 to 2-24
nifWaitAlert function, 3-5 to 3-7
nifWaitTrend function, 3-8 to 3-9
nifWriteObject function, 2-25 to 2-28

S
sessions (note), 1-3

T
technical support, A-1 to A-2
telephone and fax support, A-2
trend functions. See alert and trend functions.

	NI-FBUS Communications Manager Function Reference Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Administrative Functions
	Format of the Function Information
	Function Names
	Purpose
	Format
	Input
	Output
	Context
	Description
	Return Values

	nifClose
	nifGetBlockList
	nifGetDeviceList
	nifGetInterfaceList
	nifGetVFDList
	nifOpenBlock
	nifOpenLink
	nifOpenPhysicalDevice
	nifOpenSession
	nifOpenVfd

	Chapter 2 Core Fieldbus Functions
	Format of the Function Information
	Function Names
	Purpose
	Format
	Input
	Output
	Context
	Description
	Return Values

	nifFreeObjectAttributes
	nifGetObjectAttributes
	nifGetObjectSize
	nifGetObjectType
	nifReadObject
	nifReadObjectList
	nifWriteObject
	Using Interface Macros

	Chapter 3 Alert and Trend Functions
	Format of the Function Information
	Function Names
	Purpose
	Format
	Input
	Output
	Context
	Description
	Return Values

	nifAcknowledgeAlarm
	nifWaitAlert
	nifWaitTrend

	Appendix Customer Communication
	Glossary
	Index
	Tables
	Table 1-1. List of Administrative Functions
	Table 2-1. List of Core Functions
	Table 2-2. Object Codes for the nifObjTypeList_t Data Structure
	Table 2-3. Standard Data Types for Objects with the Object Code ODT_SIMPLETYPE
	Table 2-4. Core Function Macros
	Table 3-1. Alert Functions
	Table 3-2. Trend Function

